Testing linearity of regression models with dependent errors by kernel based methods
Stefanie Biedermann and
Holger Dette
No 2000,40, Technical Reports from Technische Universität Dortmund, Sonderforschungsbereich 475: Komplexitätsreduktion in multivariaten Datenstrukturen
Abstract:
In a recent paper Gonzalez Manteiga and Vilar Fernandez (1995) considered the problem of testing linearity of a regression under MA structure of the errors using a weighted L1-distance between a parametric and a nonparametric fit. They established asymptotic normality of the corresponding test statistic under the hypothesis and under local alternatives. In the present paper we extend these results and establish asymptotic normality of the statistic under fixed alternatives. This result is then used to prove that the optimal (with respect to uniform maximization of power) weight function in the test of Gonzalez Manteiga and Vilar Fernandez (1995) is given by the Lebesgue measure independently of the design density_ The paper also discusses several extensions of tests proposed by Azzalini and Bow_ man (1993) Zheng (1996) and Dette (1999) to the case of non-independent errors and compares these methods with the method of Gonzalez Manteiga and Vilar Fernandez (1995). It is demonstrated that among the kernel based methods the approach of the latter authors is the most efficient from an asymptotic point of view.
Keywords: Test of linearity; nonparametric regression; moving average process; optimal weighted least squares; asymptotic relative efficiency (search for similar items in EconPapers)
Date: 2000
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (6)
Downloads: (external link)
https://www.econstor.eu/bitstream/10419/77303/2/2000-40.pdf (application/pdf)
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:zbw:sfb475:200040
Access Statistics for this paper
More papers in Technical Reports from Technische Universität Dortmund, Sonderforschungsbereich 475: Komplexitätsreduktion in multivariaten Datenstrukturen Contact information at EDIRC.
Bibliographic data for series maintained by ZBW - Leibniz Information Centre for Economics ().