Minimax optimal designs for nonparametric regression - a further optimality property of the uniform distribution
Stefanie Biedermann and
Holger Dette
No 2000,43, Technical Reports from Technische Universität Dortmund, Sonderforschungsbereich 475: Komplexitätsreduktion in multivariaten Datenstrukturen
Abstract:
In the common nonparametric regression model y(i) = g(ti) + a (ti) ei , i=1….,n with i.i.d - noise and nonrepeatable design points ti we consider the problem of choosing an optimal design for the estimation of the regression function g. A minimax approach is adopted which searches for designs minimizing the maximum of the asymptotic integrated mean squared error_ where the maximum is taken over an appropriately bounded class of functions (g,a). The minimax designs are found explicitly and for certain special cases the optimality of the uniform distribution can be established.
Keywords: Nonparametric regression; kernel estimation; locally optimal designs; minimax designs; mean squared error (search for similar items in EconPapers)
Date: 2000
References: View references in EconPapers View complete reference list from CitEc
Citations:
Downloads: (external link)
https://www.econstor.eu/bitstream/10419/77122/2/2000-43.pdf (application/pdf)
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:zbw:sfb475:200043
Access Statistics for this paper
More papers in Technical Reports from Technische Universität Dortmund, Sonderforschungsbereich 475: Komplexitätsreduktion in multivariaten Datenstrukturen Contact information at EDIRC.
Bibliographic data for series maintained by ZBW - Leibniz Information Centre for Economics ().