EconPapers    
Economics at your fingertips  
 

SVM kernels for time series analysis

Stefan Rüping

No 2001,43, Technical Reports from Technische Universität Dortmund, Sonderforschungsbereich 475: Komplexitätsreduktion in multivariaten Datenstrukturen

Abstract: Time series analysis is an important and complex problem in machine learning and statistics. Real-world applications can consist of very large and high dimensional time series data. Support Vector Machines (SVMs) are a popular tool for the analysis of such data sets. This paper presents some SVM kernel functions and discusses their relative merits, depending on the type of data that is used.

Keywords: Support Vector Machines; Time Series (search for similar items in EconPapers)
Date: 2001
References: View complete reference list from CitEc
Citations:

Downloads: (external link)
https://www.econstor.eu/bitstream/10419/77140/2/2001-43.pdf (application/pdf)

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:zbw:sfb475:200143

Access Statistics for this paper

More papers in Technical Reports from Technische Universität Dortmund, Sonderforschungsbereich 475: Komplexitätsreduktion in multivariaten Datenstrukturen Contact information at EDIRC.
Bibliographic data for series maintained by ZBW - Leibniz Information Centre for Economics ().

 
Page updated 2025-03-20
Handle: RePEc:zbw:sfb475:200143