Relating principal component analysis on merged data sets to a regression approach
Michael Meyners and
El Mostafa Qannari
No 2001,47, Technical Reports from Technische Universität Dortmund, Sonderforschungsbereich 475: Komplexitätsreduktion in multivariaten Datenstrukturen
Abstract:
A method for calculating a consensus of several data matrices on the same samples using a PCA is based on a mathematical background. We propose a model to describe the data which might be obtained e. g. by means of a free choice profiling or a fixed vocabulary in a sensory profiling framework. A regression approach for this model leads to a Principal Component Analysis on Merged Data sets (PCAMD), which provides a simple method to calculate a consensus from the data. Since we use less restrictions on the variables under investigation, the model is claimed to be more general than the model induced by GPA respectively STATIS, which are widely accepted methods to analyse this kind of data. Furthermore, the PCAMD provides also additional opportunities to compare and interpret assessor performances with respect to the variables of the calculated consensus. An example from a sensory profiling study of cider is provided to illustrate these possibilities.
Keywords: principal component analysis; regression analysis; merged data sets; sensory profiling; assessor performance (search for similar items in EconPapers)
Date: 2001
References: View references in EconPapers View complete reference list from CitEc
Citations:
Downloads: (external link)
https://www.econstor.eu/bitstream/10419/77336/2/2001-47.pdf (application/pdf)
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:zbw:sfb475:200147
Access Statistics for this paper
More papers in Technical Reports from Technische Universität Dortmund, Sonderforschungsbereich 475: Komplexitätsreduktion in multivariaten Datenstrukturen Contact information at EDIRC.
Bibliographic data for series maintained by ZBW - Leibniz Information Centre for Economics ().