EconPapers    
Economics at your fingertips  
 

Secondary structure classification of amino-acid sequences using state-space modeling

Marcus Brunnert, Tillmann Krahnke and Wolfgang Urfer

No 2001,49, Technical Reports from Technische Universität Dortmund, Sonderforschungsbereich 475: Komplexitätsreduktion in multivariaten Datenstrukturen

Abstract: The secondary structure classification of amino acid sequences can be carried out by a statistical analysis of sequence and structure data using state-space models. Aiming at this classification, a modified filter algorithm programmed in S is applied to data of three proteins. The application leads to correct classifications of two proteins even when using relatively simple estimation methods for the parameters of the state-space models. Furthermore, it has been shown that the assumed initial distribution strongly influences the classification results referring to two proteins.

Keywords: Secondary structure classification; discrete state-space models; filtering (search for similar items in EconPapers)
Date: 2001
References: View references in EconPapers View complete reference list from CitEc
Citations:

Downloads: (external link)
https://www.econstor.eu/bitstream/10419/77222/2/2001-49.pdf (application/pdf)

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:zbw:sfb475:200149

Access Statistics for this paper

More papers in Technical Reports from Technische Universität Dortmund, Sonderforschungsbereich 475: Komplexitätsreduktion in multivariaten Datenstrukturen Contact information at EDIRC.
Bibliographic data for series maintained by ZBW - Leibniz Information Centre for Economics (econstor@zbw-workspace.eu).

 
Page updated 2025-03-20
Handle: RePEc:zbw:sfb475:200149