EconPapers    
Economics at your fingertips  
 

A note on maximin and Bayesian D-optimal designs in weighted polynomial regression

Stefanie Biedermann and Holger Dette

No 2003,03, Technical Reports from Technische Universität Dortmund, Sonderforschungsbereich 475: Komplexitätsreduktion in multivariaten Datenstrukturen

Abstract: We consider the problem of finding D-optimal designs for estimating the coefficients in a weighted polynominal regression model with a certain efficiency function depending on two unknown parameters, which models he heteroscedastic error structure. This problem is tackled by adopting a Bayesian and a maximin approach, and optimal designs supported on a minimal number of support points are determined explicitly.

Keywords: maximin optimality; Bayesian optimal designs; efficiency function; parameter estimation; Jacobi polynominals (search for similar items in EconPapers)
Date: 2003
References: Add references at CitEc
Citations: View citations in EconPapers (1)

Downloads: (external link)
https://www.econstor.eu/bitstream/10419/49349/1/36985974X.pdf (application/pdf)

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:zbw:sfb475:200303

Access Statistics for this paper

More papers in Technical Reports from Technische Universität Dortmund, Sonderforschungsbereich 475: Komplexitätsreduktion in multivariaten Datenstrukturen Contact information at EDIRC.
Bibliographic data for series maintained by ZBW - Leibniz Information Centre for Economics ().

 
Page updated 2025-03-20
Handle: RePEc:zbw:sfb475:200303