A note on maximin and Bayesian D-optimal designs in weighted polynomial regression
Stefanie Biedermann and
Holger Dette
No 2003,03, Technical Reports from Technische Universität Dortmund, Sonderforschungsbereich 475: Komplexitätsreduktion in multivariaten Datenstrukturen
Abstract:
We consider the problem of finding D-optimal designs for estimating the coefficients in a weighted polynominal regression model with a certain efficiency function depending on two unknown parameters, which models he heteroscedastic error structure. This problem is tackled by adopting a Bayesian and a maximin approach, and optimal designs supported on a minimal number of support points are determined explicitly.
Keywords: maximin optimality; Bayesian optimal designs; efficiency function; parameter estimation; Jacobi polynominals (search for similar items in EconPapers)
Date: 2003
References: Add references at CitEc
Citations: View citations in EconPapers (1)
Downloads: (external link)
https://www.econstor.eu/bitstream/10419/49349/1/36985974X.pdf (application/pdf)
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:zbw:sfb475:200303
Access Statistics for this paper
More papers in Technical Reports from Technische Universität Dortmund, Sonderforschungsbereich 475: Komplexitätsreduktion in multivariaten Datenstrukturen Contact information at EDIRC.
Bibliographic data for series maintained by ZBW - Leibniz Information Centre for Economics ().