Latent variable analysis and partial correlation graphs for multivariate time series
Roland Fried and
Vanessa Didelez
No 2003,06, Technical Reports from Technische Universität Dortmund, Sonderforschungsbereich 475: Komplexitätsreduktion in multivariaten Datenstrukturen
Abstract:
We investigate the possibility of exploiting partial correlation graphs for identifying interpretable latent variables underlying a multivariate time series. It is shown how the collapsibility and separation properties of partial correlation graphs can be used to understand the relation between a factor model and the structure among the observable variables.
Keywords: Time series analysis; Dimension reduction; Factor analysis; Partial correlations (search for similar items in EconPapers)
Date: 2003
References: Add references at CitEc
Citations:
Downloads: (external link)
https://www.econstor.eu/bitstream/10419/49370/1/36986025X.pdf (application/pdf)
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:zbw:sfb475:200306
Access Statistics for this paper
More papers in Technical Reports from Technische Universität Dortmund, Sonderforschungsbereich 475: Komplexitätsreduktion in multivariaten Datenstrukturen Contact information at EDIRC.
Bibliographic data for series maintained by ZBW - Leibniz Information Centre for Economics ().