EconPapers    
Economics at your fingertips  
 

Latent variable analysis and partial correlation graphs for multivariate time series

Roland Fried and Vanessa Didelez

No 2003,06, Technical Reports from Technische Universität Dortmund, Sonderforschungsbereich 475: Komplexitätsreduktion in multivariaten Datenstrukturen

Abstract: We investigate the possibility of exploiting partial correlation graphs for identifying interpretable latent variables underlying a multivariate time series. It is shown how the collapsibility and separation properties of partial correlation graphs can be used to understand the relation between a factor model and the structure among the observable variables.

Keywords: Time series analysis; Dimension reduction; Factor analysis; Partial correlations (search for similar items in EconPapers)
Date: 2003
References: Add references at CitEc
Citations:

Downloads: (external link)
https://www.econstor.eu/bitstream/10419/49370/1/36986025X.pdf (application/pdf)

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:zbw:sfb475:200306

Access Statistics for this paper

More papers in Technical Reports from Technische Universität Dortmund, Sonderforschungsbereich 475: Komplexitätsreduktion in multivariaten Datenstrukturen Contact information at EDIRC.
Bibliographic data for series maintained by ZBW - Leibniz Information Centre for Economics ().

 
Page updated 2025-03-20
Handle: RePEc:zbw:sfb475:200306