An note on the maximization of matrix valued Hankel determinants with application
Holger Dette and
W. J. Studden
No 2003,09, Technical Reports from Technische Universität Dortmund, Sonderforschungsbereich 475: Komplexitätsreduktion in multivariaten Datenstrukturen
Abstract:
In this note we consider the problem of maximizing the determinant of moment matrices of matrix measures. The maximizing matrix measure can be characterized explicitly by having equal (matrix valued) weights at the zeros of classical (one dimensional) orthogonal polynomials. The results generalize classical work of Schoenberg (1959) to the case of matrix measures. As a statistical application we consider several optimal design problems in linear models, which generalize the classical weighing design problems.
Keywords: Matrix measures; Hankel matrix; orthogonal polynomials; approximate optimal designs; spring balance weighing designs (search for similar items in EconPapers)
Date: 2003
References: View complete reference list from CitEc
Citations:
Downloads: (external link)
https://www.econstor.eu/bitstream/10419/49340/1/369861892.pdf (application/pdf)
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:zbw:sfb475:200309
Access Statistics for this paper
More papers in Technical Reports from Technische Universität Dortmund, Sonderforschungsbereich 475: Komplexitätsreduktion in multivariaten Datenstrukturen Contact information at EDIRC.
Bibliographic data for series maintained by ZBW - Leibniz Information Centre for Economics ().