EconPapers    
Economics at your fingertips  
 

A note on testing symmetry of the error distribution in linear regression models

Natalie Neumeyer, Holger Dette and Eva-Renate Nagel

No 2003,25, Technical Reports from Technische Universität Dortmund, Sonderforschungsbereich 475: Komplexitätsreduktion in multivariaten Datenstrukturen

Abstract: In the classical linear regression model the problem of testing for symmetry of the error distribution is considered. The test statistic is a functional of the difference between the two empirical distribution functions of the estimated residuals and their counterparts with opposite signs. The weak convergence of the difference process to a Gaussian process is established. The covariance structure of this process depends heavily on the density of the error distribution, and for this reason the performance of a symmetric wild bootstrap procedure is discussed in asymptotic theory and by means of a simulation study.

Keywords: M-estimation; goodness-of-fit tests; testing for symmetry; empirical process of residuals; linear model (search for similar items in EconPapers)
Date: 2003
References: View references in EconPapers View complete reference list from CitEc
Citations:

Downloads: (external link)
https://www.econstor.eu/bitstream/10419/49365/1/373261837.pdf (application/pdf)

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:zbw:sfb475:200325

Access Statistics for this paper

More papers in Technical Reports from Technische Universität Dortmund, Sonderforschungsbereich 475: Komplexitätsreduktion in multivariaten Datenstrukturen Contact information at EDIRC.
Bibliographic data for series maintained by ZBW - Leibniz Information Centre for Economics ().

 
Page updated 2025-03-20
Handle: RePEc:zbw:sfb475:200325