A simple nonparametric estimator of a monotone regression function
Holger Dette,
Natalie Neumeyer and
Kay F. Pilz
No 2003,26, Technical Reports from Technische Universität Dortmund, Sonderforschungsbereich 475: Komplexitätsreduktion in multivariaten Datenstrukturen
Abstract:
In this paper a new method for monotone estimation of a regression function is proposed. The estimator is obtained by the combination of a density and a regression estimate and is appealing to users of conventional smoothing methods as kernel estimators, local polynomials, series estimators or smoothing splines. The main idea of the new approach is to construct a density estimate from the estimated values ˆm(i/N) (i = 1, . . . ,N) of the regression function to use these “data” for the calculation of an estimate of the inverse of the regression function. The final estimate is then obtained by a numerical inversion. Compared to the conventially used techniques for monotone estimation the new method is computationally more efficient, because it does not require constrained optimization techniques for the calculation of the estimate. We prove asymptotic normality of the new estimate and compare the asymptotic properties with the unconstrained estimate. In particular it is shown that for kernel estimates or local polynomials the monotone estimate is first order asymptotically equivalent to the unconstrained estimate. We also illustrate the performance of the new procedure by means of a simulation study.
Keywords: isotonic regression; order restricted inference; Nadaraya-Watson estimator; local linear regression (search for similar items in EconPapers)
Date: 2003
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (2)
Downloads: (external link)
https://www.econstor.eu/bitstream/10419/49358/1/373262450.pdf (application/pdf)
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:zbw:sfb475:200326
Access Statistics for this paper
More papers in Technical Reports from Technische Universität Dortmund, Sonderforschungsbereich 475: Komplexitätsreduktion in multivariaten Datenstrukturen Contact information at EDIRC.
Bibliographic data for series maintained by ZBW - Leibniz Information Centre for Economics ().