EconPapers    
Economics at your fingertips  
 

Hierarchical Bayes statistical analyses for a calibration experiment

Reid Landes, Peter Loutzenhiser and Stephen Vardeman

No 2004,14, Technical Reports from Technische Universität Dortmund, Sonderforschungsbereich 475: Komplexitätsreduktion in multivariaten Datenstrukturen

Abstract: We consider hierarchical Bayes analyses of an experiment conducted to enable calibration of a set of mass-produced resistance temperature devices (RTDs). These were placed in batches into a liquid bath with a precise NIST-approved thermometer, and resistances and temperatures were recorded approximately every 30 seconds. Under the assumptions that the thermometer is accurate and each RTD responds linearly to temperature change, we use hierarchical Bayes methods to estimate the parameters of the linear calibration equations. Predictions of the parameters for an untested RTD of the same type, and interval estimates of temperature based on a realized resistance reading are also available (both for the tested RTDs and for an untested one produced under the same production process conditions).

Date: 2004
References: View complete reference list from CitEc
Citations:

Downloads: (external link)
https://www.econstor.eu/bitstream/10419/49327/1/384011357.pdf (application/pdf)

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:zbw:sfb475:200414

Access Statistics for this paper

More papers in Technical Reports from Technische Universität Dortmund, Sonderforschungsbereich 475: Komplexitätsreduktion in multivariaten Datenstrukturen Contact information at EDIRC.
Bibliographic data for series maintained by ZBW - Leibniz Information Centre for Economics (econstor@zbw-workspace.eu).

 
Page updated 2025-03-20
Handle: RePEc:zbw:sfb475:200414