A comparative study of monotone nonparametric kernel estimates
Kay F. Pilz and
Holger Dette
No 2004,21, Technical Reports from Technische Universität Dortmund, Sonderforschungsbereich 475: Komplexitätsreduktion in multivariaten Datenstrukturen
Abstract:
In this paper we present a detailed numerical comparison of three monotone nonparametric kernel regression estimates, which isotonize a nonparametric curve estimator. The first estimate is the classical smoothed isotone estimate of Brunk (1958). The second method has recently been proposed by Hall and Huang (2001) and modifies the weights of a commonly used kernel estimate such that the resulting estimate is monotone. The third estimate was recently proposed by Dette, Neumeyer and Pilz (2003) and combines density and regression estimation techniques to obtain a monotone curve estimate of the inverse of the isotone regression function. The three concepts are briefly reviewed and their finite sample properties are studied by means of a simulation study. Although all estimates are first order asymptotically equivalent (provided that the unknown regression function is isotone) some differences for moderate samples are observed.
Keywords: isotonic regression; order restricted inference; Nadaraya-Watson estimator; local linear regression; monte carlo simulation (search for similar items in EconPapers)
Date: 2004
References: Add references at CitEc
Citations:
Downloads: (external link)
https://www.econstor.eu/bitstream/10419/22553/1/tr21-04.pdf (application/pdf)
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:zbw:sfb475:200421
Access Statistics for this paper
More papers in Technical Reports from Technische Universität Dortmund, Sonderforschungsbereich 475: Komplexitätsreduktion in multivariaten Datenstrukturen Contact information at EDIRC.
Bibliographic data for series maintained by ZBW - Leibniz Information Centre for Economics ().