EconPapers    
Economics at your fingertips  
 

Optimal design for goodness-of-fit of the Michaelis-Menten enzyme kinetic function

Weng Kee Wong, Viatcheslav B. Melas and Holger Dette

No 2004,24, Technical Reports from Technische Universität Dortmund, Sonderforschungsbereich 475: Komplexitätsreduktion in multivariaten Datenstrukturen

Abstract: We construct efficient designs for the Michaelis-Menten enzyme kinetic model capable of checking model assumption. An extended model, called EMAX model is also considered for this purpose. This model is widely used in pharmacokinetics and reduces to the Michaelis- Menten model for a specific choice of the parameter setting. Our strategy is to find efficient designs for estimating the parameters in the EMAX model and at the same time test the validity of the Michaelis-Menten model against the EMAX model by maximizing a minimum of the D- or D1-efficiencies taken over a range of values for the nonlinear parameters. In addition, we show that the designs obtained from maximizing the D-efficiencies are (i) efficient for estimating parameters in the EMAX model or the Michaelis-Menten model, (ii) efficient for testing the Michaelis-Menten model against the EMAX model and (iii) robust with respect to misspecification of the unknown parameters.

Keywords: Chebyshev polynomials; EMAX model; goodness of fit test; locally D-optimal design; robust optimal design (search for similar items in EconPapers)
Date: 2004
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (3)

Downloads: (external link)
https://www.econstor.eu/bitstream/10419/22536/1/tr24-04.pdf (application/pdf)

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:zbw:sfb475:200424

Access Statistics for this paper

More papers in Technical Reports from Technische Universität Dortmund, Sonderforschungsbereich 475: Komplexitätsreduktion in multivariaten Datenstrukturen Contact information at EDIRC.
Bibliographic data for series maintained by ZBW - Leibniz Information Centre for Economics ().

 
Page updated 2025-03-20
Handle: RePEc:zbw:sfb475:200424