On the estimation of a monotone conditional variance in nonparametric regression
Holger Dette and
Kay F. Pilz
No 2004,42, Technical Reports from Technische Universität Dortmund, Sonderforschungsbereich 475: Komplexitätsreduktion in multivariaten Datenstrukturen
Abstract:
A monotone estimate of the conditional variance function in a heteroscedastic, nonpara- metric regression model is proposed. The method is based on the application of a kernel density estimate to an unconstrained estimate of the variance function and yields an esti- mate of the inverse variance function. The final monotone estimate of the variance function is obtained by an inversion of this function. The method is applicable to a broad class of nonparametric estimates of the conditional variance and particularly attractive to users of conventional kernel methods, because it does not require constrained optimization techniques. The approach is also illustrated by means of a simulation study
Keywords: nonparametric regression; heteroscedasticity; variance function; monotonicity; order restricted inference (search for similar items in EconPapers)
Date: 2004
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (1)
Downloads: (external link)
https://www.econstor.eu/bitstream/10419/22555/1/tr42-04.pdf (application/pdf)
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:zbw:sfb475:200442
Access Statistics for this paper
More papers in Technical Reports from Technische Universität Dortmund, Sonderforschungsbereich 475: Komplexitätsreduktion in multivariaten Datenstrukturen Contact information at EDIRC.
Bibliographic data for series maintained by ZBW - Leibniz Information Centre for Economics ().