Methods and algorithms for robust filtering
Roland Fried and
Ursula Gather
No 2004,44, Technical Reports from Technische Universität Dortmund, Sonderforschungsbereich 475: Komplexitätsreduktion in multivariaten Datenstrukturen
Abstract:
We discuss filtering procedures for robust extraction of a signal from noisy time series. Moving averages and running medians are standard methods for this, but they have shortcomings when large spikes (outliers) respectively trends occur. Modified trimmed means and linear median hybrid filters combine advantages of both approaches, but they do not completely overcome the difficulties. Improvements can be achieved by using robust regression methods, which work even in real time because of increased computational power and faster algorithms. Extending recent work we present filters for robust online signal extraction and discuss their merits for preserving trends, abrupt shifts and extremes and for the removal of spikes.
Keywords: Signal extraction; drift; edge; outlier; update algorithm (search for similar items in EconPapers)
Date: 2004
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (6)
Downloads: (external link)
https://www.econstor.eu/bitstream/10419/22557/1/tr44-04.pdf (application/pdf)
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:zbw:sfb475:200444
Access Statistics for this paper
More papers in Technical Reports from Technische Universität Dortmund, Sonderforschungsbereich 475: Komplexitätsreduktion in multivariaten Datenstrukturen Contact information at EDIRC.
Bibliographic data for series maintained by ZBW - Leibniz Information Centre for Economics ().