Online signal extraction by robust linear regression
Ursula Gather,
Karen Schettlinger and
Roland Fried
No 2004,53, Technical Reports from Technische Universität Dortmund, Sonderforschungsbereich 475: Komplexitätsreduktion in multivariaten Datenstrukturen
Abstract:
In intensive care, time series of vital parameters have to be analysed online, i.e. without any time delay, since there may be serious consequences for the patient otherwise. Such time series show trends, slope changes and sudden level shifts, and they are overlaid by strong noise and many measurement artefacts. The development of update algorithms and the resulting increase in computational speed allows to apply robust regression techniques to moving time windows for online signal extraction. By simulations and applications we compare the performance of least median of squares, least trimmed squares, repeated median and deepest regression for online signal extraction.
Keywords: Robust filtering; least median of squares; least trimmed squares; repeated median; deepest regression; breakdown point (search for similar items in EconPapers)
Date: 2004
References: Add references at CitEc
Citations:
Downloads: (external link)
https://www.econstor.eu/bitstream/10419/22566/1/tr53-04.pdf (application/pdf)
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:zbw:sfb475:200453
Access Statistics for this paper
More papers in Technical Reports from Technische Universität Dortmund, Sonderforschungsbereich 475: Komplexitätsreduktion in multivariaten Datenstrukturen Contact information at EDIRC.
Bibliographic data for series maintained by ZBW - Leibniz Information Centre for Economics ().