EconPapers    
Economics at your fingertips  
 

Uniform approximation of eigenvalues in Laguerre and Hermite beta-ensembles by roots of orthogonal polynomials

Lorens A. Imhof and Holger Dette

No 2004,57, Technical Reports from Technische Universität Dortmund, Sonderforschungsbereich 475: Komplexitätsreduktion in multivariaten Datenstrukturen

Abstract: We derive strong uniform approximations for the eigenvalues in general Laguerre and Hermite beta-ensembles by showing that the maximal discrepancy between the suitably scaled eigenvalues and roots of orthogonal polynomials converges almost surely to zero when the dimension converges to infinity. We also provide estimates of the rate of convergence.

Keywords: Gaussian ensemble; random matrix; rate of convergence; Weyl?s inequality; Wishart matrix (search for similar items in EconPapers)
Date: 2004
References: View complete reference list from CitEc
Citations:

Downloads: (external link)
https://www.econstor.eu/bitstream/10419/22570/1/tr57-04.pdf (application/pdf)

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:zbw:sfb475:200457

Access Statistics for this paper

More papers in Technical Reports from Technische Universität Dortmund, Sonderforschungsbereich 475: Komplexitätsreduktion in multivariaten Datenstrukturen Contact information at EDIRC.
Bibliographic data for series maintained by ZBW - Leibniz Information Centre for Economics ().

 
Page updated 2025-03-20
Handle: RePEc:zbw:sfb475:200457