Importance Assessment of Correlated Predictors in Business Cycles Classification
Daniel Enache and
Claus Weihs
No 2004,66, Technical Reports from Technische Universität Dortmund, Sonderforschungsbereich 475: Komplexitätsreduktion in multivariaten Datenstrukturen
Abstract:
When trying to interpret estimated parameters the researcher is interested in the (relative) importance of the individual predictors. However, if the predictors are highly correlated, the interpretation of coefficients, e.g. as economic ?multipliers?, is not applicable in standard regression or classification models. The goal of this paper is to develop a procedure to obtain such measures of importance for classification methods and to apply them to models for the classification of german business cycle phases.
Date: 2004
References: View references in EconPapers View complete reference list from CitEc
Citations:
Downloads: (external link)
https://www.econstor.eu/bitstream/10419/22579/1/tr66-04.pdf (application/pdf)
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:zbw:sfb475:200466
Access Statistics for this paper
More papers in Technical Reports from Technische Universität Dortmund, Sonderforschungsbereich 475: Komplexitätsreduktion in multivariaten Datenstrukturen Contact information at EDIRC.
Bibliographic data for series maintained by ZBW - Leibniz Information Centre for Economics ().