The Two-Sample Problem with Regression Errors: An Empirical Process Approach
Juan Mora () and
Natalie Neumeyer
No 2005,05, Technical Reports from Technische Universität Dortmund, Sonderforschungsbereich 475: Komplexitätsreduktion in multivariaten Datenstrukturen
Abstract:
We describe how to test the null hypothesis that errors from two parametrically specified regression models have the same distribution versus a general alternative. First we obtain the asymptotic properties of teststatistics derived from the difference between the two residual-based empirical distribution functions. Under the null distribution they are not asymptotically distribution free and, hence, a consistent bootstrap procedure is proposed to compute critical values. As an alternative, we describe how to perform the test with statistics based on martingale-transformed empirical processes, which are asymptotically distribution free. Some Monte Carlo experiments are performed to compare the behaviour of all statistics with moderate sample sizes.
Date: 2005
References: Add references at CitEc
Citations: View citations in EconPapers (2)
Downloads: (external link)
https://www.econstor.eu/bitstream/10419/22596/1/tr05-05.pdf (application/pdf)
Related works:
Working Paper: THE TWO-SAMPLE PROBLEM WITH REGRESSION ERRORS: AN EMPIRICAL PROCESS APPROACH (2005) 
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:zbw:sfb475:200505
Access Statistics for this paper
More papers in Technical Reports from Technische Universität Dortmund, Sonderforschungsbereich 475: Komplexitätsreduktion in multivariaten Datenstrukturen Contact information at EDIRC.
Bibliographic data for series maintained by ZBW - Leibniz Information Centre for Economics ().