On detection of unit roots generalizing the classic Dickey-Fuller approach
Ansgar Steland
No 2005,09, Technical Reports from Technische Universität Dortmund, Sonderforschungsbereich 475: Komplexitätsreduktion in multivariaten Datenstrukturen
Abstract:
If we are given a time series of economic data, a basic question is whether the series is stationary or a random walk, i.e., has a unit root. Whereas the problem to test the unit root null hypothesis against the alternative of stationarity is well studied in the context of classic hypothesis testing in the sense of Neyman, sequential and monitoring approaches have not been studied in detail yet. We consider stopping rules based on a sequential version of the well known Dickey-Fuller test statistics in a setting, where the asymptotic distribution theory becomes a nice and simple application of weak convergence of Ito integrals. More sophisticated extensions studied elsewhere are outlined. Finally, we present a couple of simulations.
Date: 2005
References: View references in EconPapers View complete reference list from CitEc
Citations:
Downloads: (external link)
https://www.econstor.eu/bitstream/10419/22600/1/tr09-05.pdf (application/pdf)
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:zbw:sfb475:200509
Access Statistics for this paper
More papers in Technical Reports from Technische Universität Dortmund, Sonderforschungsbereich 475: Komplexitätsreduktion in multivariaten Datenstrukturen Contact information at EDIRC.
Bibliographic data for series maintained by ZBW - Leibniz Information Centre for Economics ().