EconPapers    
Economics at your fingertips  
 

Efficient experimental designs for sigmoidal growth models

Holger Dette and Andrey Pepelyshev

No 2005,13, Technical Reports from Technische Universität Dortmund, Sonderforschungsbereich 475: Komplexitätsreduktion in multivariaten Datenstrukturen

Abstract: For the Weibull- and Richards-regression model robust designs are determined by maximizing a minimum of D- or D1-efficiencies, taken over a certain range of the non-linear parameters. It is demonstrated that the derived designs yield a satisfactory solution of the optimal design problem for this type of model in the sense that these designs are efficient and robust with respect to misspecification of the unknown parameters. Moreover, the designs can also be used for testing the postulated form of the regression model against a simplified sub-model.

Keywords: Sigmoidal growth; Weibull regression model; exponential regression model; Richards-regression model; logistic regression model (search for similar items in EconPapers)
Date: 2005
References: View references in EconPapers View complete reference list from CitEc
Citations:

Downloads: (external link)
https://www.econstor.eu/bitstream/10419/22604/1/tr13-05.pdf (application/pdf)

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:zbw:sfb475:200513

Access Statistics for this paper

More papers in Technical Reports from Technische Universität Dortmund, Sonderforschungsbereich 475: Komplexitätsreduktion in multivariaten Datenstrukturen Contact information at EDIRC.
Bibliographic data for series maintained by ZBW - Leibniz Information Centre for Economics (econstor@zbw-workspace.eu).

 
Page updated 2025-03-20
Handle: RePEc:zbw:sfb475:200513