EconPapers    
Economics at your fingertips  
 

Comparing Knowledge-Based Sampling to Boosting

Martin Scholz

No 2005,26, Technical Reports from Technische Universität Dortmund, Sonderforschungsbereich 475: Komplexitätsreduktion in multivariaten Datenstrukturen

Abstract: Boosting algorithms for classification are based on altering the ini- tial distribution assumed to underly a given example set. The idea of knowledge-based sampling (KBS) is to sample out prior knowledge and previously discovered patterns to achieve that subsequently ap- plied data mining algorithms automatically focus on novel patterns without any need to adjust the base algorithm. This sampling strat- egy anticipates a user's expectation based on a set of constraints how to adjust the distribution. In the classified case KBS is similar to boosting. This article shows that a specific, very simple KBS algo- rithm is able to boost weak base classifiers. It discusses differences to AdaBoost.M1 and LogitBoost, and it compares performances of these algorithms empirically in terms of predictive accuracy, the area under the ROC curve measure, and squared error.

Date: 2005
References: View complete reference list from CitEc
Citations:

Downloads: (external link)
https://www.econstor.eu/bitstream/10419/22616/1/tr26-05.pdf (application/pdf)

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:zbw:sfb475:200526

Access Statistics for this paper

More papers in Technical Reports from Technische Universität Dortmund, Sonderforschungsbereich 475: Komplexitätsreduktion in multivariaten Datenstrukturen Contact information at EDIRC.
Bibliographic data for series maintained by ZBW - Leibniz Information Centre for Economics ().

 
Page updated 2025-03-20
Handle: RePEc:zbw:sfb475:200526