EconPapers    
Economics at your fingertips  
 

On the Complexity of Rule Discovery from Distributed Data

Martin Scholz

No 2005,31, Technical Reports from Technische Universität Dortmund, Sonderforschungsbereich 475: Komplexitätsreduktion in multivariaten Datenstrukturen

Abstract: This paper analyses the complexity of rule selection for supervised learning in distributed scenarios. The selection of rules is usually guided by a utility measure such as predictive accuracy or weighted relative accuracy. Other examples are support and confidence, known from association rule mining. A common strategy to tackle rule selection from distributed data is to evaluate rules locally on each dataset. While this works well for homogeneously distributed data, this work proves limitations of this strategy if distributions are allowed to deviate. To identify those subsets for which local and global distributions deviate may be regarded as an interesting learning task of its own, explicitly taking the locality of data into account. This task can be shown to be basically as complex as discovering the globally best rules from local data. Based on the theoretical results some guidelines for algorithm design are derived.

Date: 2005
References: View complete reference list from CitEc
Citations:

Downloads: (external link)
https://www.econstor.eu/bitstream/10419/22621/1/tr31-05.pdf (application/pdf)

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:zbw:sfb475:200531

Access Statistics for this paper

More papers in Technical Reports from Technische Universität Dortmund, Sonderforschungsbereich 475: Komplexitätsreduktion in multivariaten Datenstrukturen Contact information at EDIRC.
Bibliographic data for series maintained by ZBW - Leibniz Information Centre for Economics ().

 
Page updated 2025-03-20
Handle: RePEc:zbw:sfb475:200531