EconPapers    
Economics at your fingertips  
 

new test for the parametric form of the variance function in nonparametric regression

Holger Dette and Ingrid Van Keilegom ()

No 2005,32, Technical Reports from Technische Universität Dortmund, Sonderforschungsbereich 475: Komplexitätsreduktion in multivariaten Datenstrukturen

Abstract: In the common nonparametric regression model the problem of testing for the parametric form of the conditional variance is considered. A stochastic process based on the difference between the empirical processes obtained from the standardized nonparametric residuals under the null hypothesis (of a specific parametric form of the variance function) and the alternative is introduced and its weak convergence established. This result is used for the construction of a Cramer von Mises type statistic for testing the parametric form of the conditional variance. The finite sample properties of a bootstrap version of this test are investigated by means of a simulation study. In particular the new procedure is compared with some of the currently available methods for this problem and its performance is illustrated by means of a data example.

Keywords: Bootstrap; Kernel estimation; Nonparametric regression; Residual distribution; Testing heteroscedasticity; Testing homoscedasticity (search for similar items in EconPapers)
Date: 2005
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (3)

Downloads: (external link)
https://www.econstor.eu/bitstream/10419/22622/1/tr32-05.pdf (application/pdf)

Related works:
Journal Article: A new test for the parametric form of the variance function in non‐parametric regression (2007) Downloads
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:zbw:sfb475:200532

Access Statistics for this paper

More papers in Technical Reports from Technische Universität Dortmund, Sonderforschungsbereich 475: Komplexitätsreduktion in multivariaten Datenstrukturen Contact information at EDIRC.
Bibliographic data for series maintained by ZBW - Leibniz Information Centre for Economics ().

 
Page updated 2025-03-20
Handle: RePEc:zbw:sfb475:200532