Testing the parametric form of the volatility in continuous time diffusion models: an empirical process approach
Holger Dette and
Mark Podolskij ()
No 2005,50, Technical Reports from Technische Universität Dortmund, Sonderforschungsbereich 475: Komplexitätsreduktion in multivariaten Datenstrukturen
Abstract:
In this paper we present two new tests for the parametric form of the variance function in difusion processes dXt = b(t;Xt)+ó(t;Xt)dWt: Our approach is based on two stochastic processes of the integrated volatility. We prove weak convergence of these processes to centered processes whose conditional distributions given the process (Xt)t2[0;1] are Gaussian. In the special case of testing for a constant volatility the limiting process is the standard Brownian bridge in both cases. As a consequence an asymptotic distribution free test (for the problem of testing for homoscedasticity) and bootstrap tests (for the problem of testing for a general parametric form) can easily be implemented. It is demonstrated that the new tests are more powerful with respect to Pitman alternatives than the currently available procedures for this problem. The asymptotic advantages of the new approach are also observed for realistic sample sizes in a simulation study, where the finite sample properties of a Kolmogorov-Smirnov test are investigated.
Keywords: Specification tests; integrated volatility; bootstrap; heteroscedasticity; stable convergence; Brownian Bridge (search for similar items in EconPapers)
Date: 2005
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (4)
Downloads: (external link)
https://www.econstor.eu/bitstream/10419/22643/1/tr50-05.pdf (application/pdf)
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:zbw:sfb475:200550
Access Statistics for this paper
More papers in Technical Reports from Technische Universität Dortmund, Sonderforschungsbereich 475: Komplexitätsreduktion in multivariaten Datenstrukturen Contact information at EDIRC.
Bibliographic data for series maintained by ZBW - Leibniz Information Centre for Economics ().