Boosting Classifiers for Drifting Concepts
Martin Scholz and
Ralf Klinkenberg
No 2006,06, Technical Reports from Technische Universität Dortmund, Sonderforschungsbereich 475: Komplexitätsreduktion in multivariaten Datenstrukturen
Abstract:
This paper proposes a boosting-like method to train a classifier ensemble from data streams. It naturally adapts to concept drift and allows to quantify the drift in terms of its base learners. The algorithm is empirically shown to outperform learning algorithms that ignore concept drift. It performs no worse than advanced adaptive time window and example selection strategies that store all the data and are thus not suited for mining massive streams.
Date: 2006
References: View references in EconPapers View complete reference list from CitEc
Citations:
Downloads: (external link)
https://www.econstor.eu/bitstream/10419/22652/1/tr06-06.pdf (application/pdf)
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:zbw:sfb475:200606
Access Statistics for this paper
More papers in Technical Reports from Technische Universität Dortmund, Sonderforschungsbereich 475: Komplexitätsreduktion in multivariaten Datenstrukturen Contact information at EDIRC.
Bibliographic data for series maintained by ZBW - Leibniz Information Centre for Economics ().