EconPapers    
Economics at your fingertips  
 

Response Surface Methodology for Optimizing Hyper Parameters

Claus Weihs, Karsten Luebke and Irina Czogiel

No 2006,09, Technical Reports from Technische Universität Dortmund, Sonderforschungsbereich 475: Komplexitätsreduktion in multivariaten Datenstrukturen

Abstract: The performance of an algorithm often largely depends on some hyper parameter which should be optimized before its usage. Since most conventional optimization methods suffer from some drawbacks, we developed an alternative way to find the best hyper parameter values. Contrary to the well known procedures, the new optimization algorithm is based on statistical methods since it uses a combination of Linear Mixed Effect Models and Response Surface Methodology techniques. In particular, the Method of Steepest Ascent which is well known for the case of an Ordinary Least Squares setting and a linear response surface has been generalized to be applicable for repeated measurements situations and for response surfaces of order o ?Ü 2.

Keywords: repeated measurements; Random Intercepts Model; deterministic error terms; Method of Steepest Ascent; Support Vector Machine (search for similar items in EconPapers)
Date: 2006
References: View complete reference list from CitEc
Citations:

Downloads: (external link)
https://www.econstor.eu/bitstream/10419/22673/1/tr09-06.pdf (application/pdf)

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:zbw:sfb475:200609

Access Statistics for this paper

More papers in Technical Reports from Technische Universität Dortmund, Sonderforschungsbereich 475: Komplexitätsreduktion in multivariaten Datenstrukturen Contact information at EDIRC.
Bibliographic data for series maintained by ZBW - Leibniz Information Centre for Economics ().

 
Page updated 2025-03-20
Handle: RePEc:zbw:sfb475:200609