Localized Linear Discriminant Analysis
Irina Czogiel,
Karsten Luebke,
Marc Zentgraf and
Claus Weihs
No 2006,10, Technical Reports from Technische Universität Dortmund, Sonderforschungsbereich 475: Komplexitätsreduktion in multivariaten Datenstrukturen
Abstract:
Despite its age, the Linear Discriminant Analysis performs well even in situations where the underlying premises like normally distributed data with constant covariance matrices over all classes are not met. It is, however, a global technique that does not regard the nature of an individual observation to be classified. By weighting each training observation according to its distance to the observation of interest, a global classifier can be transformed into an observation specific approach. So far, this has been done for logistic discrimination. By using LDA instead, the computation of the local classifier is much simpler. Moreover, it is ready for applications in multi-class situations.
Keywords: classification; local models; LDA (search for similar items in EconPapers)
Date: 2006
References: View references in EconPapers View complete reference list from CitEc
Citations:
Downloads: (external link)
https://www.econstor.eu/bitstream/10419/22653/1/tr10-06.pdf (application/pdf)
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:zbw:sfb475:200610
Access Statistics for this paper
More papers in Technical Reports from Technische Universität Dortmund, Sonderforschungsbereich 475: Komplexitätsreduktion in multivariaten Datenstrukturen Contact information at EDIRC.
Bibliographic data for series maintained by ZBW - Leibniz Information Centre for Economics ().