EconPapers    
Economics at your fingertips  
 

OLS-based estimation of the disturbance variance under spatial autocorrelation

Walter Krämer and Christoph Hanck

No 2006,42, Technical Reports from Technische Universität Dortmund, Sonderforschungsbereich 475: Komplexitätsreduktion in multivariaten Datenstrukturen

Abstract: We investigate the OLS-based estimator s2 of the disturbance variance in the standard linear regression model with cross section data when the disturbances are homoskedastic, but spatially correlated. For the most popular model of spatially autoregressive disturbances, we show that s2 can be severely biased in finite samples, but is asymptotically unbiased and consistent for most types of spatial weighting matrices as sample size increases.

Keywords: regression; spatial error correlation; bias; variance (search for similar items in EconPapers)
Date: 2006
References: View references in EconPapers View complete reference list from CitEc
Citations:

Downloads: (external link)
https://www.econstor.eu/bitstream/10419/22686/1/tr42-06.pdf (application/pdf)

Related works:
Working Paper: OLS-based estimation of the disturbance variance under spatial autocorrelation (2006)
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:zbw:sfb475:200642

Access Statistics for this paper

More papers in Technical Reports from Technische Universität Dortmund, Sonderforschungsbereich 475: Komplexitätsreduktion in multivariaten Datenstrukturen Contact information at EDIRC.
Bibliographic data for series maintained by ZBW - Leibniz Information Centre for Economics ().

 
Page updated 2025-03-20
Handle: RePEc:zbw:sfb475:200642