EconPapers    
Economics at your fingertips  
 

Testing strict monotonicity in nonparametric regression

Melanie Birke and Holger Dette

No 2006,49, Technical Reports from Technische Universität Dortmund, Sonderforschungsbereich 475: Komplexitätsreduktion in multivariaten Datenstrukturen

Abstract: A new test for strict monotonicity of the regression function is proposed which is based on a composition of an estimate of the inverse of the regression function with a common regression estimate. This composition is equal to the identity if and only if the ?true? regression function is strictly monotone, and a test based on an L2-distance is investigated. The asymptotic normality of the corresponding test statistic is established under the null hypothesis of strict monotonicity.

Keywords: nonparametric regression; strictly monotone regression; goodness-of-fit test (search for similar items in EconPapers)
Date: 2006
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (2)

Downloads: (external link)
https://www.econstor.eu/bitstream/10419/22693/1/tr49-06.pdf (application/pdf)

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:zbw:sfb475:200649

Access Statistics for this paper

More papers in Technical Reports from Technische Universität Dortmund, Sonderforschungsbereich 475: Komplexitätsreduktion in multivariaten Datenstrukturen Contact information at EDIRC.
Bibliographic data for series maintained by ZBW - Leibniz Information Centre for Economics ().

 
Page updated 2025-03-20
Handle: RePEc:zbw:sfb475:200649