GMM estimation of the autoregressiveparameter in a spatial autoregressive errormodel using regression residuals
Matthias Arnold
No 2007,25, Technical Reports from Technische Universität Dortmund, Sonderforschungsbereich 475: Komplexitätsreduktion in multivariaten Datenstrukturen
Abstract:
This paper suggests an improved GMM estimator for the autoregressive parameter of a spatial autoregressive error model by taking into account that unobservable regression disturbances are di.erent from observable regression residuals. Although this di.erence decreases in large samples, it is important in small samples. Monte Carlo simulations show that the bias can be reduced by 65 - 80% compared to a GMM estimator that neglects the difference between disturbances and residuals. The mean squared error is smaller, too.
Keywords: GMM estimation; spatial autoregression; regression residuals (search for similar items in EconPapers)
Date: 2007
References: View references in EconPapers View complete reference list from CitEc
Citations:
Downloads: (external link)
https://www.econstor.eu/bitstream/10419/25008/1/55048101X.PDF (application/pdf)
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:zbw:sfb475:200725
Access Statistics for this paper
More papers in Technical Reports from Technische Universität Dortmund, Sonderforschungsbereich 475: Komplexitätsreduktion in multivariaten Datenstrukturen Contact information at EDIRC.
Bibliographic data for series maintained by ZBW - Leibniz Information Centre for Economics ().