EconPapers    
Economics at your fingertips  
 

Kernelized design of experiments

Stefan Rüping and Claus Weihs

No 2009,02, Technical Reports from Technische Universität Dortmund, Sonderforschungsbereich 475: Komplexitätsreduktion in multivariaten Datenstrukturen

Abstract: This paper describes an approach for selecting instances in regression problems in the cases where observations x are readily available, but obtaining labels y is hard. Given a database of observations, an algorithm inspired by statistical design of experiments and kernel methods is presented that selects a set of k instances to be chosen in order to maximize the prediction performance of a support vector machine. It is shown that the algorithm significantly outperforms related approaches on a number of real-world datasets.

Date: 2009
References: View references in EconPapers View complete reference list from CitEc
Citations:

Downloads: (external link)
https://www.econstor.eu/bitstream/10419/36602/1/600486184.PDF (application/pdf)

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:zbw:sfb475:200902

Access Statistics for this paper

More papers in Technical Reports from Technische Universität Dortmund, Sonderforschungsbereich 475: Komplexitätsreduktion in multivariaten Datenstrukturen Contact information at EDIRC.
Bibliographic data for series maintained by ZBW - Leibniz Information Centre for Economics ().

 
Page updated 2025-03-20
Handle: RePEc:zbw:sfb475:200902