A dynamic semiparametric factor model for implied volatility string dynamics
Matthias Fengler,
Wolfgang Härdle and
Enno Mammen
No 2005-020, SFB 649 Discussion Papers from Humboldt University Berlin, Collaborative Research Center 649: Economic Risk
Abstract:
A primary goal in modelling the implied volatility surface (IVS) for pricing and hedging aims at reducing complexity. For this purpose one fits the IVS each day and applies a principal component analysis using a functional norm. This approach, however, neglects the degenerated string structure of the implied volatility data and may result in a modelling bias. We propose a dynamic semiparametric factor model (DSFM), which approximates the IVS in a finite dimensional function space. The key feature is that we only fit in the local neighborhood of the design points. Our approach is a combination of methods from functional principal component analysis and backfitting techniques for additive models. The model is found to have an approximate 10% better performance than a sticky moneyness model. Finally, based on the DSFM, we devise a generalized vega-hedging strategy for exotic options that are priced in the local volatility framework. The generalized vega-hedging extends the usual approaches employed in the local volatility framework.
Keywords: smile; local volatility; generalized additive model; backfitting; functional principal component analysis (search for similar items in EconPapers)
JEL-codes: C14 G12 (search for similar items in EconPapers)
Date: 2005
References: View references in EconPapers View complete reference list from CitEc
Citations:
Downloads: (external link)
https://www.econstor.eu/bitstream/10419/25039/1/496022024.PDF (application/pdf)
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:zbw:sfb649:sfb649dp2005-020
Access Statistics for this paper
More papers in SFB 649 Discussion Papers from Humboldt University Berlin, Collaborative Research Center 649: Economic Risk Contact information at EDIRC.
Bibliographic data for series maintained by ZBW - Leibniz Information Centre for Economics ().