Multiple disorder problems for Wiener and compound Poisson processes with exponential jumps
Pavel V. Gapeev
No 2006-074, SFB 649 Discussion Papers from Humboldt University Berlin, Collaborative Research Center 649: Economic Risk
Abstract:
The multiple disorder problem consists of finding a sequence of stopping times which are as close as possible to the (unknown) times of 'disorder' when the distribution of an observed process changes its probability characteristics. We present a formulation and solution of the multiple disorder problem for a Wiener and a compound Poisson process with exponential jumps. The method of proof is based on reducing the initial optimal switching problems to the corresponding coupled optimal stopping problems and solving the equivalent coupled free-boundary problems by means of the smooth- and continuous-fit conditions.
Date: 2006
References: View references in EconPapers View complete reference list from CitEc
Citations:
Downloads: (external link)
https://www.econstor.eu/bitstream/10419/25157/1/522556078.PDF (application/pdf)
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:zbw:sfb649:sfb649dp2006-074
Access Statistics for this paper
More papers in SFB 649 Discussion Papers from Humboldt University Berlin, Collaborative Research Center 649: Economic Risk Contact information at EDIRC.
Bibliographic data for series maintained by ZBW - Leibniz Information Centre for Economics ().