Econometrics of co-jumps in high-frequency data with noise
Markus Bibinger and
Lars Winkelmann
No 2013-021, SFB 649 Discussion Papers from Humboldt University Berlin, Collaborative Research Center 649: Economic Risk
Abstract:
We establish estimation methods to determine co-jumps in multivariate high-frequency data with nonsynchronous observations and market microstructure noise. The ex-post quadratic covariation of the signal part, which is modeled by an Itˆo-semimartingale, is estimated with a locally adaptive spectral approach. Locally adaptive thresholding allows to disentangle the co-jump and continuous part in quadratic covariation. Our estimation procedure implicitly renders spot (co-)variance estimators. We derive a feasible stable limit theorem for a truncated spectral estimator of integrated covariance. A test for common jumps is obtained with a wild bootstrap strategy. We give an explicit guideline how to implement the method and test the algorithm in Monte Carlo simulations. An empirical application to intra-day tick-data demonstrates the practical value of the approach.
Keywords: co-jumps; covolatility estimation; jump detection; microstructure noise; non-synchronous observations; quadratic covariation; spectral estimation; truncation (search for similar items in EconPapers)
JEL-codes: C14 E58 G32 (search for similar items in EconPapers)
Date: 2013
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (1)
Downloads: (external link)
https://www.econstor.eu/bitstream/10419/79576/1/745236030.pdf (application/pdf)
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:zbw:sfb649:sfb649dp2013-021
Access Statistics for this paper
More papers in SFB 649 Discussion Papers from Humboldt University Berlin, Collaborative Research Center 649: Economic Risk Contact information at EDIRC.
Bibliographic data for series maintained by ZBW - Leibniz Information Centre for Economics ().