Forecasting volatility of wind power production
Zhiwei Shen and
Matthias Ritter
No 2015-026, SFB 649 Discussion Papers from Humboldt University Berlin, Collaborative Research Center 649: Economic Risk
Abstract:
The increasing share of wind energy in the portfolio of energy sources highlights its uncertainties due to changing weather conditions. To account for the uncertainty in predicting wind power production, this article examines the volatility forecasting abilities of different GARCH-type models for wind power production. Moreover, due to characteristic features of the wind power process, such as heteroscedasticity and nonlinearity, we also investigate the use of a Markov regime-switching GARCH (MRS-GARCH) model on forecasting volatility of wind power. The realized volatility, which is derived from lower-scale data, serves as a benchmark for the latent volatility. We find that the MRS-GARCH model significantly outperforms traditional GARCH models in predicting the volatility of wind power, while the exponential GARCH model is superior among traditional GARCH models.
Keywords: wind energy; volatility forecasting; GARCH models; Markov regime-switching; realized volatility (search for similar items in EconPapers)
JEL-codes: C22 Q42 Q47 (search for similar items in EconPapers)
Date: 2015
References: View references in EconPapers View complete reference list from CitEc
Citations:
Downloads: (external link)
https://www.econstor.eu/bitstream/10419/119424/1/826616720.pdf (application/pdf)
Related works:
Journal Article: Forecasting volatility of wind power production (2016) 
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:zbw:sfb649:sfb649dp2015-026
Access Statistics for this paper
More papers in SFB 649 Discussion Papers from Humboldt University Berlin, Collaborative Research Center 649: Economic Risk Contact information at EDIRC.
Bibliographic data for series maintained by ZBW - Leibniz Information Centre for Economics ().