EconPapers    
Economics at your fingertips  
 

Cross-city hedging with weather derivatives using bivariate DCC GARCH models

Peter Kosater

No 2/06, Discussion Papers in Econometrics and Statistics from University of Cologne, Institute of Econometrics and Statistics

Abstract: As monopolies gave their way to competitive wholesale electricity markets, volumetric risk came into play. Electricity supplier can buy weather derivatives to protect from volumetric risk due to unexpected weather conditions. However, contracts can only be negotiated for weather variables measured at few selected locations. To hedge their specific risk, electricity supplier have to correlate their risk with the risk at tradeable locations. In this paper, we concentrate on temperature derivatives. More precisely, we examine if and how bivariate GARCH models with dynamic conditional correlations can help in modelling correlation between two distinct temperature time series. The knowledge of correlation dynamics between the temperature time series enables an electricity supplier to correlate his risk with the risk of a traded city and to construct a sensible hedge. It turns out that the application of bivariate DCC GARCH models to three German temperature time series provides encouraging results.

Date: 2006
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (1)

Downloads: (external link)
https://www.econstor.eu/bitstream/10419/26738/1/525381422.PDF (application/pdf)

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:zbw:ucdpse:206

Access Statistics for this paper

More papers in Discussion Papers in Econometrics and Statistics from University of Cologne, Institute of Econometrics and Statistics Contact information at EDIRC.
Bibliographic data for series maintained by ZBW - Leibniz Information Centre for Economics ().

 
Page updated 2025-03-20
Handle: RePEc:zbw:ucdpse:206