Robust performance hypothesis testing with smooth functions of population moments
Olivier Ledoit and
Michael Wolf
No 305, ECON - Working Papers from Department of Economics - University of Zurich
Abstract:
Applied researchers often want to make inference for the difference of a given performance measure for two investment strategies. In this paper, we consider the class of performance measures that are smooth functions of population means of the underlying returns; this class is very rich and contains many performance measures of practical interest (such as the Sharpe ratio and the variance). Unfortunately, many of the inference procedures that have been suggested previously in the applied literature make unreasonable assumptions that do not apply to real-life return data, such as normality and independence over time. We will discuss inference procedures that are asymptotically valid under very general conditions, allowing for heavy tails and time dependence in the return data. In particular, we will promote a studentized time series bootstrap procedure. A simulation study demonstrates the improved finite-sample performance compared to existing procedures. Applications to real data are also provided.
Keywords: Bootstrap; HAC inference; kurtosis; Sharpe ratio; sknewness; variance (search for similar items in EconPapers)
JEL-codes: C12 C14 C22 (search for similar items in EconPapers)
Date: 2018-10
New Economics Papers: this item is included in nep-ecm and nep-ets
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (3)
Downloads: (external link)
https://www.zora.uzh.ch/id/eprint/157426/1/econwp305.pdf (application/pdf)
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:zur:econwp:305
Access Statistics for this paper
More papers in ECON - Working Papers from Department of Economics - University of Zurich Contact information at EDIRC.
Bibliographic data for series maintained by Severin Oswald ().