EconPapers    
Economics at your fingertips  
 

Quadratic shrinkage for large covariance matrices

Olivier Ledoit and Michael Wolf

No 335, ECON - Working Papers from Department of Economics - University of Zurich

Abstract: This paper constructs a new estimator for large covariance matrices by drawing a bridge between the classic Stein (1975) estimator in finite samples and recent progress under large-dimensional asymptotics. The estimator keeps the eigenvectors of the sample covariance matrix and applies shrinkage to the inverse sample eigenvalues. The corresponding formula is quadratic: it has two shrinkage targets weighted by quadratic functions of the concentration (that is, matrix dimension divided by sample size). The first target dominates mid-level concentrations and the second one higher levels. This extra degree of freedom enables us to outperform linear shrinkage when optimal shrinkage is not linear (which is the general case). Both of our targets are based on what we term the “Stein shrinker”, a local attraction operator that pulls sample covariance matrix eigenvalues towards their nearest neighbors, but whose force diminishes with distance, like gravitation. We prove that no cubic or higher-order nonlinearities beat quadratic with respect to Frobenius loss under large-dimensional asymptotics. Non-normality and the case where the matrix dimension exceeds the sample size are accommodated. Monte Carlo simulations confirm state-of-the-art performance in terms of accuracy, speed, and scalability.

Keywords: Inverse shrinkage; Hilbert transform; large-dimensional asymptotics; signal amplitude; Stein shrinkage (search for similar items in EconPapers)
JEL-codes: C13 (search for similar items in EconPapers)
Date: 2019-11, Revised 2020-12
New Economics Papers: this item is included in nep-ecm and nep-ore
References: View references in EconPapers View complete reference list from CitEc
Citations:

Downloads: (external link)
https://www.zora.uzh.ch/id/eprint/176887/7/econwp335.pdf (application/pdf)

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:zur:econwp:335

Access Statistics for this paper

More papers in ECON - Working Papers from Department of Economics - University of Zurich Contact information at EDIRC.
Bibliographic data for series maintained by Severin Oswald ().

 
Page updated 2024-09-13
Handle: RePEc:zur:econwp:335