EconPapers    
Economics at your fingertips  
 

CATDEV: Stata modules for interpretation of categorical dependent variable models

J. Scott Long ()
Additional contact information
J. Scott Long: Indiana University

Statistical Software Components from Boston College Department of Economics

Abstract: There are several methods that can be used to effectively interpret the results of regression models for categorical dependent variables. Each of these methods requires the analyst to complete post estimation computations of the estimated parameters. Generally speaking, the estimated coefficients cannot be meaningfully interpreted without additional computations. This set of additions to Stata (in the form of ado files) that facilitate the interpretation of results of the following models: binary logit, binary probit, ordinal logit, ordinal probit, multinomial logit, Poisson regression, negative binomial regression, and tobit. These commands make it easy to do the computations for a variety of methods of interpretation: predicted outcomes and plots of these outcomes, discrete changes in predicted outcomes, partial change in predicted outcomes, standardized coefficients for variables based on a latent variable, factor changes in odds ratios for logit models, and factor changes in mean counts for count models. Details on each of these methods of interpretation can be found in my book Regression Models for Categorical and Limited Dependent Variables (Sage Publications).

Language: Stata
Date: 1998-04-16
References: Add references at CitEc
Citations:

Downloads: (external link)
http://fmwww.bc.edu/repec/bocode/a/adov4.zip program code (application/zip)

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:boc:bocode:s340701

Ordering information: This software item can be ordered from
http://repec.org/docs/ssc.php

Access Statistics for this software item

More software in Statistical Software Components from Boston College Department of Economics Boston College, 140 Commonwealth Avenue, Chestnut Hill MA 02467 USA. Contact information at EDIRC.
Bibliographic data for series maintained by Christopher F Baum ().

 
Page updated 2025-03-30
Handle: RePEc:boc:bocode:s340701