Global Optimization issues in Supervised Learning. An overview
Laura Palagi
No 2017-11, DIAG Technical Reports from Department of Computer, Control and Management Engineering, Universita' degli Studi di Roma "La Sapienza"
Abstract:
The paper presents an overview of global issues in optimization methods for Supervised Learning (SL). We focus on Feedforward Neural Networks with the aim of reviewing global methods specifically devised for the class of continuous unconstrained optimization problems arising both in Multi Layer Perceptron/Deep Networks and in Radial Basis Networks. We first recall the learning optimization paradigm for FNN and we briefly discuss global scheme for the joined choice of the network topologies and of the network parameters. The main part of the paper focus on the core subproblem which is the unconstrained regularized weight optimization problem. We review some recent results on the existence of local-non global solutions of the unconstrained nonlinear problem and the role of determining a global solution in a Machine Learning paradigm. Local algorithms that are widespread used to solve the continuous unconstrained problems are addressed with focus on possible improvements to exploit the global properties. Hybrid global methods specifically devised for SL optimization problems which embed local algorithms are discussed at the end.
Keywords: Supervised Learning; Feedforward Neural Networks; Global Optimization; Weights Optimization; Hybrid algorithms (search for similar items in EconPapers)
Date: 2017
New Economics Papers: this item is included in nep-big and nep-cmp
References: View references in EconPapers View complete reference list from CitEc
Citations:
Downloads: (external link)
http://wwwold.dis.uniroma1.it/~bibdis/RePEc/aeg/report/2017-11.pdf First version, 2017 (application/pdf)
Our link check indicates that this URL is bad, the error code is: 500 Can't connect to wwwold.dis.uniroma1.it:80 (No such host is known. )
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:aeg:report:2017-11
Access Statistics for this paper
More papers in DIAG Technical Reports from Department of Computer, Control and Management Engineering, Universita' degli Studi di Roma "La Sapienza" Contact information at EDIRC.
Bibliographic data for series maintained by Antonietta Angelica Zucconi ( this e-mail address is bad, please contact ).