EconPapers    
Economics at your fingertips  
 

Using Genetic Algorithms in Secured Business Intelligence Mobile Applications

Silvia Trif ()

Informatica Economica, 2011, vol. 15, issue 1, 69-79

Abstract: The paper aims to assess the use of genetic algorithms for training neural networks used in secured Business Intelligence Mobile Applications. A comparison is made between classic back-propagation method and a genetic algorithm based training. The design of these algorithms is presented. A comparative study is realized for determining the better way of training neural networks, from the point of view of time and memory usage. The results show that genetic algorithms based training offer better performance and memory usage than back-propagation and they are fit to be implemented on mobile devices.

Keywords: Genetic Algorithm; Mobile Applications; Back-propagation; Business Intelligence; Security (search for similar items in EconPapers)
Date: 2011
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (1)

Downloads: (external link)
http://www.revistaie.ase.ro/content/57/06%20-Trif.pdf (application/pdf)

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:aes:infoec:v:15:y:2011:i:1:p:69-79

Access Statistics for this article

Informatica Economica is currently edited by Ion Ivan

More articles in Informatica Economica from Academy of Economic Studies - Bucharest, Romania Contact information at EDIRC.
Bibliographic data for series maintained by Paul Pocatilu ().

 
Page updated 2025-03-19
Handle: RePEc:aes:infoec:v:15:y:2011:i:1:p:69-79