The Laplace-P-spline methodology for fast approximate Bayesian inference in additive partial linear models
Oswaldo Gressani () and
Philippe Lambert ()
Additional contact information
Oswaldo Gressani: Université catholique de Louvain, LIDAM/ISBA, Belgium
Philippe Lambert: Université catholique de Louvain, LIDAM/ISBA, Belgium
No 2020020, LIDAM Discussion Papers ISBA from Université catholique de Louvain, Institute of Statistics, Biostatistics and Actuarial Sciences (ISBA)
Abstract:
Multiple linear regression is among the cornerstones of statistical model building. Whether from a descriptive or inferential perspective, it is certainly the most widespread approach to analyze the inuence of a collection of explanatory variables on a response. The straightforward interpretability in conjunction with the simple and elegant mathematics of least squares created room for a well appreciated toolbox with an ubiquitous presence in various scientific fields. In this article, the linear dependence assumption of the response variable with respect to the covariates is relaxed and replaced by an additive architecture of univariate smooth functions of predictor variables. An approximate Bayesian approach combining Laplace approximations and P-splines is used for inference in this additive partial linear model class. The analytical availability of the gradient and Hessian of the posterior penalty vector allows for a fast and efficient exploration of the penalty space, which in turn yields accurate point and set estimates of latent field variables. Different simulation settings confirm the statistical performance of the Laplace-P-spline approach and the methodology is applied on mortality data.
Pages: 34
Date: 2020-01-01
New Economics Papers: this item is included in nep-ecm
References: View references in EconPapers View complete reference list from CitEc
Citations:
Downloads: (external link)
https://dial.uclouvain.be/pr/boreal/fr/object/bore ... tastream/PDF_01/view (application/pdf)
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:aiz:louvad:2020020
Access Statistics for this paper
More papers in LIDAM Discussion Papers ISBA from Université catholique de Louvain, Institute of Statistics, Biostatistics and Actuarial Sciences (ISBA) Voie du Roman Pays 20, 1348 Louvain-la-Neuve (Belgium). Contact information at EDIRC.
Bibliographic data for series maintained by Nadja Peiffer ().