Tail inference using extreme U-statistics
Jochem Oorschot,
Johan Segers and
Chen Zhou
Additional contact information
Johan Segers: Université catholique de Louvain, LIDAM/ISBA, Belgium
No 2022014, LIDAM Discussion Papers ISBA from Université catholique de Louvain, Institute of Statistics, Biostatistics and Actuarial Sciences (ISBA)
Abstract:
Extreme U-statistics arise when the kernel of a U-statistic has a high degree but depends only on its arguments through a small number of top order statistics. As the kernel degree of the U-statistic grows to infinity with the sample size, estimators built out of such statistics form an intermediate family in between those constructed in the block maxima and peaks-over-threshold frameworks in extreme value analysis. The asymptotic normality of extreme U-statistics based on location-scale invariant kernels is established. Although the asymptotic variance corresponds with the one of the Hájek projection, the proof goes beyond considering the first term in Hoeffding’s variance decomposition; instead, a growing number of terms needs to be incorporated in the proof. To show the usefulness of extreme U-statistics, we propose a kernel depending on the three highest order statistics leading to an unbiased estimator of the shape parameter of the generalized Pareto distribution. When applied to samples in the max-domain of attraction of an extreme value distribution, the extreme U-statistic based on this kernel produces a locationscale invariant estimator of the extreme value index which is asymptotically normal and whose finite-sample performance is competitive with that of the pseudo-maximum likelihood estimator.
Keywords: U-statistic; Generalized Pareto distribution; Hájek projection; Extreme value index (search for similar items in EconPapers)
Pages: 49
Date: 2022-03-16
New Economics Papers: this item is included in nep-ecm and nep-rmg
References: View references in EconPapers View complete reference list from CitEc
Citations:
Downloads: (external link)
https://dial.uclouvain.be/pr/boreal/en/object/bore ... tastream/PDF_01/view (application/pdf)
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:aiz:louvad:2022014
Access Statistics for this paper
More papers in LIDAM Discussion Papers ISBA from Université catholique de Louvain, Institute of Statistics, Biostatistics and Actuarial Sciences (ISBA) Voie du Roman Pays 20, 1348 Louvain-la-Neuve (Belgium). Contact information at EDIRC.
Bibliographic data for series maintained by Nadja Peiffer ().