EconPapers    
Economics at your fingertips  
 

Insurance analytics with clustering techniques

Charlotte Jamotton (), Donatien Hainaut () and Thomas Hames ()
Additional contact information
Charlotte Jamotton: Université catholique de Louvain, LIDAM/ISBA, Belgium
Donatien Hainaut: Université catholique de Louvain, LIDAM/ISBA, Belgium
Thomas Hames: Detralytics

No 2023002, LIDAM Discussion Papers ISBA from Université catholique de Louvain, Institute of Statistics, Biostatistics and Actuarial Sciences (ISBA)

Abstract: The k-means algorithm and its variants are popular clustering techniques. Their purpose is to uncover group structures in a dataset. In actuarial applications, these partitioning methods detect clusters of policies with similar features and allow one to draw up a map of dominant risks. The main challenge lies in de􏰂ning a distance between two observations exclusively characterised by categorical variables. This research paper starts with a review of the k-means algorithm and develops an extension based on Burt's framework to manage categorical rating factors. We then focus on a mini-batch version that keeps computation time under control when analysing a large-scale dataset. We next broaden the scope of application of the fuzzy k-means to fully categorised datasets. Lastly, we conclude with a thorough introduction to spectral clustering and work around the dimensionality issue by reducing the size of the initial dataset with k-means.

Keywords: Clustering analysis; unsupervised learning; k-means; spectral clustering (search for similar items in EconPapers)
Pages: 27
Date: 2023-01-12
New Economics Papers: this item is included in nep-cmp
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (1)

Downloads: (external link)
https://dial.uclouvain.be/pr/boreal/en/object/bore ... tastream/PDF_01/view (application/pdf)

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:aiz:louvad:2023002

Access Statistics for this paper

More papers in LIDAM Discussion Papers ISBA from Université catholique de Louvain, Institute of Statistics, Biostatistics and Actuarial Sciences (ISBA) Voie du Roman Pays 20, 1348 Louvain-la-Neuve (Belgium). Contact information at EDIRC.
Bibliographic data for series maintained by Nadja Peiffer ().

 
Page updated 2025-04-13
Handle: RePEc:aiz:louvad:2023002