Meta-learning approaches for recovery rate prediction
Paolo Gambetti,
Francesco Roccazzella and
Frédéric Vrins
No 2020007, LIDAM Discussion Papers LFIN from Université catholique de Louvain, Louvain Finance (LFIN)
Keywords: machine learning; forecasts combination; loss given default; credit risk; model risk (search for similar items in EconPapers)
Date: 2020-01-01
New Economics Papers: this item is included in nep-big, nep-cmp and nep-rmg
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (2)
Downloads: (external link)
https://dial.uclouvain.be/pr/boreal/fr/object/bore ... tastream/PDF_01/view (application/pdf)
Related works:
Journal Article: Meta-Learning Approaches for Recovery Rate Prediction (2022) 
Working Paper: Meta-Learning Approaches for Recovery Rate Prediction (2022)
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:ajf:louvlf:2020007
Access Statistics for this paper
More papers in LIDAM Discussion Papers LFIN from Université catholique de Louvain, Louvain Finance (LFIN) Voie du Roman Pays 34, 1348 Louvain-la-Neuve (Belgium). Contact information at EDIRC.
Bibliographic data for series maintained by Séverine De Visscher ().