EconPapers    
Economics at your fingertips  
 

Meta-learning approaches for recovery rate prediction

Paolo Gambetti, Francesco Roccazzella and Frédéric Vrins

No 2020007, LIDAM Discussion Papers LFIN from Université catholique de Louvain, Louvain Finance (LFIN)

Keywords: machine learning; forecasts combination; loss given default; credit risk; model risk (search for similar items in EconPapers)
Date: 2020-01-01
New Economics Papers: this item is included in nep-big, nep-cmp and nep-rmg
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (2)

Downloads: (external link)
https://dial.uclouvain.be/pr/boreal/fr/object/bore ... tastream/PDF_01/view (application/pdf)

Related works:
Journal Article: Meta-Learning Approaches for Recovery Rate Prediction (2022) Downloads
Working Paper: Meta-Learning Approaches for Recovery Rate Prediction (2022)
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:ajf:louvlf:2020007

Access Statistics for this paper

More papers in LIDAM Discussion Papers LFIN from Université catholique de Louvain, Louvain Finance (LFIN) Voie du Roman Pays 34, 1348 Louvain-la-Neuve (Belgium). Contact information at EDIRC.
Bibliographic data for series maintained by Séverine De Visscher ().

 
Page updated 2025-03-19
Handle: RePEc:ajf:louvlf:2020007