Machine learning the first stage in 2SLS: Practical guidance from bias decomposition and simulation
Connor Lennon,
Edward Rubin and
Glen Waddell
Papers from arXiv.org
Abstract:
Machine learning (ML) primarily evolved to solve "prediction problems." The first stage of two-stage least squares (2SLS) is a prediction problem, suggesting potential gains from ML first-stage assistance. However, little guidance exists on when ML helps 2SLS$\unicode{x2014}$or when it hurts. We investigate the implications of inserting ML into 2SLS, decomposing the bias into three informative components. Mechanically, ML-in-2SLS procedures face issues common to prediction and causal-inference settings$\unicode{x2014}$and their interaction. Through simulation, we show linear ML methods (e.g., post-Lasso) work well, while nonlinear methods (e.g., random forests, neural nets) generate substantial bias in second-stage estimates$\unicode{x2014}$potentially exceeding the bias of endogenous OLS.
Date: 2025-05
References: View references in EconPapers View complete reference list from CitEc
Citations:
Downloads: (external link)
http://arxiv.org/pdf/2505.13422 Latest version (application/pdf)
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:arx:papers:2505.13422
Access Statistics for this paper
More papers in Papers from arXiv.org
Bibliographic data for series maintained by arXiv administrators ().