EconPapers    
Economics at your fingertips  
 

Hybrid LSTM and PPO Networks for Dynamic Portfolio Optimization

Jun Kevin and Pujianto Yugopuspito

Papers from arXiv.org

Abstract: This paper introduces a hybrid framework for portfolio optimization that fuses Long Short-Term Memory (LSTM) forecasting with a Proximal Policy Optimization (PPO) reinforcement learning strategy. The proposed system leverages the predictive power of deep recurrent networks to capture temporal dependencies, while the PPO agent adaptively refines portfolio allocations in continuous action spaces, allowing the system to anticipate trends while adjusting dynamically to market shifts. Using multi-asset datasets covering U.S. and Indonesian equities, U.S. Treasuries, and major cryptocurrencies from January 2018 to December 2024, the model is evaluated against several baselines, including equal-weight, index-style, and single-model variants (LSTM-only and PPO-only). The framework's performance is benchmarked against equal-weighted, index-based, and single-model approaches (LSTM-only and PPO-only) using annualized return, volatility, Sharpe ratio, and maximum drawdown metrics, each adjusted for transaction costs. The results indicate that the hybrid architecture delivers higher returns and stronger resilience under non-stationary market regimes, suggesting its promise as a robust, AI-driven framework for dynamic portfolio optimization.

Date: 2025-11
References: View references in EconPapers View complete reference list from CitEc
Citations:

Downloads: (external link)
http://arxiv.org/pdf/2511.17963 Latest version (application/pdf)

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:arx:papers:2511.17963

Access Statistics for this paper

More papers in Papers from arXiv.org
Bibliographic data for series maintained by arXiv administrators ().

 
Page updated 2025-12-20
Handle: RePEc:arx:papers:2511.17963