Image Analyses and Real Estate: Evaluation of the Quality of Location Using Remotely Sensed Imagery
Miroslav Despotovic,
David Koch,
Gunther Maier and
Matthias Zeppelzauer
ERES from European Real Estate Society (ERES)
Abstract:
A growing number of applied studies examine the impact of urban space quality on property price. Especially the planning and development of the immediate neighborhood (micro location) is an important influencing factor in regional economics. An image-based method for the estimation of location quality, in the context of property valuation, does not exist yet. We develop method for the determination of the quality of location using image processing, taking at the same time into account the classification in quality classes based on regional structural characteristics. With the help of automatic image analysis, a new information source is leveraged, which previously could not be taken into account within the scope of evaluation of location quality or within the scope of automated valuation models (e.g. hedonic models). In the field of image analysis, the extraction of parameters related to location quality is a new task. It is so far not clear to which degree meaningful parameters can be found autonomously by machine learning. This dissertation will investigate this question in detail and is to our knowledge the first approach for the automatic image-based valuation of location quality.
Keywords: Hedonic Pricing; Image Processing; location quality; Machine Learning; Neighborhoods (search for similar items in EconPapers)
JEL-codes: R3 (search for similar items in EconPapers)
Date: 2017-07-01
New Economics Papers: this item is included in nep-big, nep-cmp and nep-ure
References: Add references at CitEc
Citations:
Downloads: (external link)
https://eres.architexturez.net/doc/oai-eres-id-eres2017-511 (text/html)
https://eres.architexturez.net/system/files/511.pdf (application/pdf)
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:arz:wpaper:eres2017_511
Access Statistics for this paper
More papers in ERES from European Real Estate Society (ERES) Contact information at EDIRC.
Bibliographic data for series maintained by Architexturez Imprints ().