Theory & Methods: Bias due to Ignoring the Sample Design in Case–Control Studies
John M. Neuhaus
Australian & New Zealand Journal of Statistics, 2002, vol. 44, issue 3, 285-293
Abstract:
Case–control studies allow efficient estimation of the associations of covariates with a binary response in settings where the probability of a positive response is small. It is well known that covariate–response associations can be consistently estimated using a logistic model by acting as if the case–control (retrospective) data were prospective, and that this result does not hold for other binary regression models. However, in practice an investigator may be interested in fitting a non–logistic link binary regression model and this paper examines the magnitude of the bias resulting from ignoring the case–control sample design with such models. The paper presents an approximation to the magnitude of this bias in terms of the sampling rates of cases and controls, as well as simulation results that show that the bias can be substantial.
Date: 2002
References: Add references at CitEc
Citations: View citations in EconPapers (1)
Downloads: (external link)
https://doi.org/10.1111/1467-842X.00231
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:bla:anzsta:v:44:y:2002:i:3:p:285-293
Ordering information: This journal article can be ordered from
http://www.blackwell ... bs.asp?ref=1369-1473
Access Statistics for this article
Australian & New Zealand Journal of Statistics is currently edited by Chris J. Lloyd, Rob J. Hyndman and Russell B. Millar
More articles in Australian & New Zealand Journal of Statistics from Australian Statistical Publishing Association Inc.
Bibliographic data for series maintained by Wiley Content Delivery ().